Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes.

نویسندگان

  • Didier Auboeuf
  • Dennis H Dowhan
  • Yun Kyoung Kang
  • Kimberly Larkin
  • Jae Woon Lee
  • Susan M Berget
  • Bert W O'Malley
چکیده

The biological consequences of steroid hormone-mediated transcriptional activation of target genes might be difficult to predict because alternative splicing of a single neosynthesized precursor RNA can result in production of different protein isoforms with opposite biological activities. Therefore, an important question to address is the manner in which steroid hormones affect the splicing of their target gene transcripts. In this report, we demonstrate that individual steroid hormones had different and opposite effects on alternative splicing decisions, stimulating the production of different spliced variants produced from genes driven by steroid hormone-dependent promoters. Steroid hormone transcriptional effects are mediated by steroid hormone receptor coregulators that also modify alternative splicing decisions. Our data suggest that activated steroid hormone receptors recruit coregulators to the target promoter that participate in both the production and the splicing of the target gene transcripts. Because different coregulators activating transcription can have opposite effects on alternative splicing decisions, we conclude that the precise nature of the transcriptional coregulators recruited by activated steroid receptors, depending on the promoter and cellular contexts, may play a major role in regulating the nature of the spliced variants produced from certain target genes in response to steroid hormones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thyroid hormone-regulated target genes have distinct patterns of coactivator recruitment and histone acetylation.

Thyroid hormone receptors (TRs) are ligand-regulated transcription factors that bind to thyroid hormone response elements of target genes. Upon ligand binding, they recruit coactivator complexes that increase histone acetylation and recruit RNA polymerase II (Pol II) to activate transcription. Recent studies suggest that nuclear receptors and coactivators may have temporal recruitment patterns ...

متن کامل

Agonist and chemopreventative ligands induce differential transcriptional cofactor recruitment by aryl hydrocarbon receptor.

Aryl hydrocarbon receptor (AHR) is a transcription factor whose activity is regulated by environmental agents, including several carcinogenic agonists. We measured recruitment of AHR and associated proteins to the human cytochrome P4501A1 gene promoter in vivo. Upon treatment with the agonist beta-naphthoflavone, AHR is rapidly associated with the promoter and recruits the three members of the ...

متن کامل

Interaction of the U1 snRNP with nonconserved intronic sequences affects 5' splice site selection.

Intron definition and splice site selection occur at an early stage during assembly of the spliceosome, the complex mediating pre-mRNA splicing. Association of U1 snRNP with the pre-mRNA is required for these early steps. We report here that the yeast U1 snRNP-specific protein Nam8p is a component of the commitment complexes, the first stable complexes assembled on pre-mRNA. In vitro and in viv...

متن کامل

Identification of target genes in breast cancer cells directly regulated by the SRC-3/AIB1 coactivator.

Steroid receptor coactivator-3 (SRC-3/AIB1) is a coactivator for nuclear receptors and other transcription factors and an oncogene that contributes to growth regulation and development of mammary and other tumor types. Because of its biological functions, it is important to identify genes regulated by SRC-3. However, because coactivators do not bind DNA directly, extensive work is required to d...

متن کامل

Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation

The molecular basis of cell signal-regulated alternative splicing at the 3' splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3' splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 8  شماره 

صفحات  -

تاریخ انتشار 2004